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Values for the entropy and energy of the fluid and 
solid phases at melting have been obtained by ex­
trapolation of the above results, together with the 
data of Table I, and by use of Clapeyron's equation. 
These values are listed in Table IX. These tabulated 
values for Sand U for both phases are estimated 
to be accurate to about 19'0. 

The isothermal bulk modulus BT= - V (ap/a V) IT 
and the thermal expansivity a= V-l(aV faT) Ip were 
obtained for the fluid phase as by-products of the 
calculational procedure discussed above. The behavior 
of these quantities is indicated in Fig. 6. An attempt 
was also made to evaluate the specific heats Cp and 
Cv from the relationships Cp = T(aS/aT) Ip and Cv = 
T(aS/aT) Iv. Unfortunately, the uncertainty in the 
tabulated values of the entropy is sufficiently large, 
compared to the changes in entropy over the tem­
perature range investigated, that only rough estimates 
of CP and Cv could be obtained. The values found 
for Cp ranged between 25 and 50 J/mole·oK while 
those for Cv lay between 11 and 24 J/moleooK m 
the P-V-T range covered in this experiment. 

DISCUSSION 

Solid-Fluid Phase Transition 

Perhaps the best-known theoretical model for melt­
ing is the Lindemann model, in which it is assumed 
that a solid melts whenever the rms amplitude of the 
thermal vibrations of a nucleus, «U2»)1/2, reaches a 
certain critical fraction of the nearest-neighbor dis­
tance a. This leads to the Lindemann equation re­
lating melting temperature T to solid molar volume V: 

T/(M02V2/3) =C, (4) 

where (} is some temperature characteristic of the 
solid, M is the molecular weight, and C is a constant. 
When the Einstein model is used to calculate fJ, and 
values for T and V are taken from Table I, the cal­
culated values for the "constant" C range from 1.17X 
10-4 to 1.31XIQ--4 (g/mole)-1(OK)-I(cm3/mole)-2/3 as 
the temperature changes from 940 to 201°K. This in­
dicates that at 94°K the solid melts when «u2)/a2)1/2= 

0.098 while at 201°K the solid does not melt until 
«u2(!a2) 1/2= 0.104. Thus «u2)/a2)1/2 changes by 69'0 
with a 1000 K change in melting temperature, while 
the "constant" C changes by 129'0 over this same 
range. Similar results have been obtained by Gold­
man/o who used a more realistic model to calculate O. 

A number of additional melting models have been 
proposed over the years, but none has as yet proven 
entirely satisfactory.l The Monte Carlo calculations 
of Ross and Alderll give better agreement with the 
present melting data than do any other theoretical 

10 V. V. Goldman (to be published). 
11 M. Ross and B. J. Alder, Phys. Rev. Letters 16, 1077 (1966). 
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FIG. 6. Isothermal bulk modulus and thermal expansivity for 
argon in the fluid phase. 

calculations. However, these still yield a solid molar 
volume which is more than 19'0 too great. 

The authors have recently proposed a model for 
melting which is based on the behavior of a system 
of hard spheres.4 This model, which leaves no free 
parameters to be fitted to the melting data, is able 
to predict the solid and fluid molar volumes at the 
transition to better than 59'0 over the temperature 
range covered in this experiment. An added advantage 
of this model is that it clearly indicates the depend­
ence of various qualitative features of the transition 
upon details of the intermolecular pair potential. 

Fluid 

Only three types of theories at present seem capable 
of satisfactorily representing the equilibrium behavior 
of argon in the dense fluid phase. These are the Monte 
Carlo12 and molecular dynamics13 computer calcula­
tions, and the recently developed perturbation ap­
proach.14 A number of other theories have been pro-

12 I. R. McDonald and K. Singer, Discussions Faraday Soc. 43, 
40 (1967); J. Chern. Phys. 47, 4766 (1967). 

13 L. Veriet, Phys. Rev. 159, 98 (1967). 
14 J. A. Barker and D. Henderson, J. Chern. Phys. 47, 4714 

(1967) . 
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FIG. 7. Thermodynamic variables for argon: comparison with 
theory. The solid lines are experimental results interpolated from 
Tables VI through VIII. The open and solid circles result, respec­
tively, from the Monte Carlo calculations of Ref. 12 and the 
molecular dynamics calculations of Ref. 13. The broken lines are 
the results of the perturbation calculations of Ref. 14. (The 
entropy and energy are given in dimensionless units defined by 
S,/R=[S-S (ideal gas)J/R and U,/N~= (U-3RT/2)/NoE 
where R is the molar gas constant, E is the depth of the inter­
molecular potential well, and No is Avogadro's number.} 

posed to represent the fluid phase, but these theories 
do not lead to good agreement with the experimental 
data at moderate and high densities. Since these other 
theories have been adequately reviewed elsewherel.l5.l6 
they will not be discussed here. 

The Monte Carlo method consists of the generation 
of a chain of successive states of a system (represented 
by a particular intermolecular potential) in such a 

16 J. M. H. Levelt and E . G. D. Cohen, in Studies in Statistical 
Mechanics, J. De Boer and G. E. Uhlenbeck, Eds. (North-Holland 
Pub!. Co., Amsterdam, 1964), pp. 107-239. 

Ie S. A. Rice and P. Gray, The Statistical Mechanics of Simple 
Liquids (Interscience Publishers, Inc., New York, 1965) . 

manner that a given state will occur with a frequency 
proportional to its probability of occurrence in an 
ensemble, if the chain is sufficiently long. The thermo­
dynamic properties of the system are then obtained 
by averaging appropriate quantities over such chains. 
The molecular dynamics method, on the other hand, 
involves the simultaneous solution of the equations 
of motion of a system of particles interacting with 
each other according to a given potential. Both of 
these methods are limited to calculations for a rela­
tively small number of particles (1000 or less) because 
of speed and memory limitations of present-day com­
puters. However the errors introduced by considering 
only a small number of particles are considerably 
lessened by the use of periodic boundary conditions, 
so that tests of the dependence of the calculated 
thermodynamic properties on the number of particles 
show that this dependence is relatively small for both 
kinds of calculations for systems of more than 100 
particles. Both methods should lead to "exact" results 
for the particular potential used, subject to small 
statistical errors and small errors due to the boundary 
conditions. However, even on the present high-speed 
computers, such calculations require about an hour 
to obtain an accuracy of a few percent for one point 
on the equation of state of a system represented by 
a particular potential, so they cannot be considered 
to be entirely satisfactory as liquid theories. Never­
theless, at the present time, comparison of such cal­
culations for different potentials with actual experi­
mental data probably provides the best means of 
obtaining information about the intermolecular po­
tential governing the behavior of dense fluids. 

Up to now only a few machine calculations have 
been carried out in the volume and temperature range 
covered by the present experiment. In Fig. 7 the 
Monte Carlo results of McDonald and Singerl! and 
the molecular dynamics results of Verletl3 are com­
pared with isotherms obtained by interpolation from 
the present experimental data. These machine cal­
culations were both carried out using the Lennard­
Jones potential: 

(5) 

where E gives the depth of the attractive well and u 
is the distance at which the potential is equal to zero. 
The values E/k= 119.8°K and u=3.405 A obtained by 
Michels et alP from second virial coefficient data were 
used in both sets of calculations. 

Figure 7(a) shows a comparison of the calculated 
and experimental values for the "compressibility fac­
tor" PVjRT. Here V is the molar volume and R is 
the molar gas constant. The molecular dynamics re­
sults show good agreement with the experimental 

17 A. Michels, Hub. Wijker, and Hk. Wijker, Physica 15, 627 
(1949) . 


